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The vast amount of textual information available today is useless unless it can be e�ectively and
e�ciently searched. The goal in information retrieval is to �nd documents that are relevant to
a given user query. We can represent a document collection by a matrix whose (i; j) entry is
nonzero only if the ith term appears in the jth document; thus each document corresponds to
a column vector. The query is also represented as a column vector whose ith term is nonzero
only if the ith term appears in the query. We score each document for relevancy by taking its
inner product with the query. The highest scoring documents are considered the most relevant.
Unfortunately, this method does not necessarily retrieve all relevant documents because it is based
on literal term matching. Latent Semantic Indexing (LSI) replaces the document matrix with an
approximation generated by the truncated singular value decomposition (SVD). This method has
been shown to overcome many di�culties associated with literal term matching. In this paper
we propose replacing the SVD with the semi-discrete decomposition (SDD). We will describe the
SDD approximation, show how to compute it, and compare the SDD-based LSI method to the
SVD-based LSI method. We will show that SDD-based LSI does as well as SVD-based LSI in
terms of document retrieval while requiring only one-twentieth the storage and one-half the time
to compute each query. We will also show how to update the SDD approximation when documents
are added or deleted from the document collection.
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1. INTRODUCTION

The vast amount of textual information available today is useless unless it can be ef-
fectively and e�ciently searched. The goal in information retrieval is to match user
information requests, or queries, with relevant information items, or documents.
Examples of information retrieval systems include electronic library catalogs, the
grep string-matching tool in Unix, and search engines for the World Wide Web
such as Alta Vista.
Oftentimes users are searching for documents about a particular concept that

may not be accurately described by a list of keywords. For example, a search on
a term such as \Mark Twain" is likely to miss some documents about \Samuel
Clemens." We might know that these are the same people, but most informa-
tion retrieval systems have no way of knowing. Latent semantic indexing (LSI)
overcomes this problem by automatically discovering latent relationships in the
document collection.
Before we discuss LSI further, we need to introduce the vector space method: The

document collection is represented by an m� n term-document matrix where m is
the number of terms and n is the number of documents. Typically this matrix has
fewer than 1% nonzero entries. Queries are represented as m-vectors, and a matrix-
vector product produces an n-vector of scores that is used to rank the documents
in relevance. This method is described in x2.
LSI is based on the vector space method, but the m�n term-document matrix is

replaced with a low-rank approximation generated by the truncated singular value
decomposition (SVD). The truncated SVD approximation is the sum of k rank-1
outer products of m-vectors ui with n-vectors vi, weighted by scalars �i:

kX
i=1

�iuiv
T
i :

Here, k is chosen to be much smaller than m and n. This approximation produces
the closest rank-k matrix to the term-document matrix in the Frobenius measure
[Golub and Van Loan 1989]. LSI has performed well on both large and small
document collections; see, for example, Dumais [1991, 1995]. LSI is described in
x3.
Thus far, only the SVD and its relatives, the ULV and URV decompositions

[Berry and Fierro 1996], have been used in LSI. We propose using a very di�erent
decomposition, originally developed for image compression by O'Leary and Pe-
leg [1983]. In this decomposition, which we call the semi-discrete decomposition
(SDD), the matrix is approximated by a sum of rank-1 outer products just as in the
SVD, but the m-vectors and n-vectors are restricted to only have entries in the set
f�1; 0; 1g. The decomposition is constructed via a greedy algorithm and is not an
optimal decomposition in the sense of producing the best possible approximation
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in the Frobenius and Euclidean norms; however, the SDD-based LSI method does
as well as the SVD-based method in terms of document retrieval while requiring
less than one-twentieth the storage and only one-half the query time. The trade-o�
is that the SDD matrix approximation takes substantially longer to compute; for-
tunately, this is only a one-time expense. The SDD-based LSI method is described
in x4, and computational comparisons with the SVD-based method are given in x5.
In many information retrieval settings, the document collection is frequently up-

dated. Much work has been done on updating the SVD approximation to the
term-document matrix [Berry et al. 1995; O'Brien 1994], but it can be as expen-
sive as computing the original SVD. E�cient algorithms for updating the SDD
approximation are given in x6.
A preliminary report on the idea was given in Kolda and O'Leary [1997]. Some

of the material in this paper is taken from Kolda [1997].

2. THE VECTOR SPACE METHOD

Both the SVD- and the SDD-based LSI methods are extensions of the vector space
method, which we describe in this section.

2.1 Creating the Term-Document Matrix

We begin with a collection of textual documents. We determine a list of keywords
or terms by

(1) creating a list of all words that appear in the documents,

(2) removing words void of semantic content such as \of" and \because" (using the
stop word list of Frakes [1992]), and

(3) further trimming the list by removing words that appear in only one document.

The remaining words are the terms, which we number from 1 to m. Further dis-
cussion of preprocessing techniques can be found in Kolda [1997].
We then create an m� n term-document matrix

A = [aij ];

where aij represents the weight of term i in document j. See Figure 1 for an example
of a 6� 4 term-document matrix.

Document

Term 1 2 3 4 Query

Mark 15 0 0 0 1

Twain 15 0 20 0 1

Samuel 0 10 5 0 0
Clemens 0 20 10 0 0
Purple 0 0 0 20 0
Fairy 0 0 0 15 0

Score 30 0 20 0

Fig. 1. Vector space method
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A natural choice of weights is to set aij = fij , the number of times that term
i appears in document j, but more elaborate weighting schemes often yield better
performance.
A term weight has three components: local, global, and normalization [Salton

and Buckley 1988]. We let

aij = gi tij dj ;

where tij is the local term component (based on information in the jth document
only), gi is the global component (based on information about the use of the ith
term throughout the collection), and dj is the normalization component, specifying
whether or not the columns (i.e. the documents) are normalized. Various formulas
for each component are given in Tables 1 { 3. In these formulas, � represents the
signum function:

�(t) =

�
1 if t > 0;
0 if t = 0:

Table 1. Local Term Weights

Symbol Formula for tij Description Reference

b �(fij) Binary Salton and Buckley [1988]
t fij Term Frequency Salton and Buckley [1988]

c :5

�
�(fij) +

fij

maxk fkj

�
Augmented
Normalized Term
Frequency

Harman [1992],
Salton and Buckley [1988]

l log(fij + 1) Log Harman [1992]

Table 2. Global Term Weights

Symbol Formula for gi Description Reference

x 1 No change Salton and Buckley [1988]

f log

�
nP

j
�(fij)

�
Inverse Document
Frequency (IDF)

Salton and Buckley [1988]

p log

�
n�
P

j
�(fij)P

j
�(fij)

�
Probabilistic
Inverse

Harman [1992],
Salton and Buckley [1988]

Table 3. Document Length Normalization

Symbol Formula for dj Description Reference

x 1 No Change Salton and Buckley [1988]

n
�Pm

i=1
(gitij)2

�
�1=2

Normal Salton and Buckley [1988]
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The weighting scheme is speci�ed by a three letter string whose letters represent
the local, global, and normalization components respectively; for example, using
weight lxn speci�es that

aij =
log(fij + 1)qPm

k=1 (log(fkj + 1))
2
;

that is, log local weights, no global weights, and column normalization.

2.2 Query Creation and Processing

A query is represented as an m-vector

q = [qi];

where qi represents the weight of term i in the query. In order to rank the docu-
ments, we compute

s = qTA;

and the jth entry of s represents the score of document j. The documents can then
be ranked according to their scores, highest to lowest, for relevance to the query.
In Figure 1, we show the result of performing a query on \Mark Twain." Notice
that document 2 is not recognized as relevant even though it probably should be,
since \Mark Twain" was a pseudonym used by Samuel Clemens. This illustrates
the problem with literal term matching.
We must also specify a term weighting for the query. This need not be the same

as the weighting for the documents [Salton and Buckley 1988]. Here

qi = gi t̂i;

where gi is computed based on the frequencies of terms in the document collection,
and t̂i is computed using the same formulas as for tij given in Table 1 with fij
replaced by f̂i, the frequency of term i in the query. Normalizing the query vector
has no e�ect on the document rankings, so we never do it. This means the last
component of the three-letter query weighting string is always x. So, for example,
the weighting cfx means

qi =

 
:5 �(f̂i) + :5

 
f̂i

maxk f̂k

!!
log

 
nPn

j=1 fij

!
:

A six-letter string, e.g. lxn.cfx, speci�es the document and query weights. We
will use various weightings in our LSI experiments. The choice of these weightings
is a result of more extensive studies presented in Kolda [1997].

3. LSI VIA THE SVD

3.1 Approximating the Term-Document Matrix

In LSI, we use an approximation of the term-document matrix, as generated by the
truncated SVD. The SVD decomposes A into a set of r = rank(A) triplets of left
(ui) and right (vi) singular vectors and scalar singular values (�i):

A =

rX
i=1

�iuiv
T
i :
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The ui vectors and vi vectors each form orthonormal sets, and the positive scalars
�i are ordered from greatest to least. The SVD is more commonly seen in matrix
notation as

A = U�V T

where the columns of U are the left singular vectors, the columns of V are the right
singular vectors, and � is a diagonal matrix containing the singular values.
The truncated SVD can be used to build a rank-k approximation to A by only

using the �rst k << r triplets; that is,

A � Ak �

kX
i=1

�iuiv
T
i :

In matrix form, this is written as

A � Ak � Uk�kV
T
k ;

where Uk and Vk consist of the �rst k columns of U and V respectively, and �k

is the leading k � k principal submatrix of �. It can be shown that Ak is the
best rank-k approximation to A in the Frobenius norm and in the Euclidean norm
[Golub and Van Loan 1989]. Each of the n columns of the matrix Ak is a linear
combination of the k columns of Uk, and thus we have an implicit clustering of
documents based on these principal components
Since the SVD approximation is close to the original matrix, document retrieval

based on its use can be expected to be almost as good as document retrieval based
on the original matrix. But, in fact, the situation is much better than this. The
approximation matrix is a \noisy" version of the original matrix, where the noise
was added to reduce the rank (i.e., make the documents appear more similar) while
remaining close to the original data. Suppose that \Clemens" and \Twain" often
appear together in the document collection. If we then have one document that
only mentions \Twain," the approximation may add some noise to the \Clemens"
entry as a result of compressing the rank. The amount of noise depends on the
size of k. For very small values of k, there is a lot of noise | usually too much
| and as k grows, the noise gets smaller until it completely disappears. At some
intermediate value of k, we have the optimal amount of noise for recognizing the
latent relationship between \Clemens" and \Twain".
Figure 2 shows the result of using a rank-2 truncated SVD to approximate the

term-document matrix given in Figure 1.

3.2 Query Processing

We can process queries using our approximation for A:

s = qTA � qTAk

= qTUk�kV
T
k

= (qTUk�
�
k )(�

1��
k V T

k )

� ~qT ~A:

The scalar � controls the splitting of the �k matrix and has no e�ect unless we re-
normalize the columns of ~A, that is, after computing the decomposition, we re-scale



Semi-Discrete Matrix Decomposition for Latent Semantic Indexing � 7

Document

Term 1 2 3 4 Query

Mark 3.7 3.5 5.5 0 1

Twain 11.0 10.3 16.1 0 1

Samuel 4.1 3.9 6.1 0 0
Clemens 8.3 7.8 12.2 0 0
Purple 0 0 0 20 0
Fairy 0 0 0 15 0

Score 14.7 13.8 21.6 0

Fig. 2. LSI via the SVD

each column of (�1��
k V T

k ) so that it has Euclidean norm one. We will experiment
with various choices for � and re-normalization in x 5.2.
In the example in Figure 2, we do not use re-normalization. Observe that docu-

ment 2 is now recognized as relevant because \noise" has been added to the \Mark"
and \Twain" entries in column 2.
The SVD has been used quite e�ectively for information retrieval, as documented

in numerous reports. We recommend the original LSI paper [Deerwester et al. 1990],
a paper reporting the e�ectiveness of the LSI approach on the TREC-3 dataset
[Dumais 1991], and a more mathematical paper by Berry, Dumais, and O'Brien
[1995].

4. LSI VIA A SEMI-DISCRETE DECOMPOSITION

4.1 Approximating the Term-Document Matrix

The truncated SVD produces the best rank-k approximation to a matrix, but gen-
erally even a very low rank truncated SVD approximation requires more storage
than the original matrix if the original matrix is sparse. To save storage (and query
time), we propose replacing the truncated SVD by the semi-discrete decomposition
(SDD):

Ak =

kX
i=1

dixiy
T
i ;

where each m-vector xi and each n-vector yi is constrained to have entries from the
set S = f�1; 0; 1g, and the scalar di is any positive number. We can also express
this in matrix notation as

Ak = XkDkY
T
k ;

where Xk = fx1 � � �xkg, Yk = fy1 � � � ykg, and Dk = diagfd1; � � � ; dkg. This decom-
position was originally introduced in O'Leary and Peleg [1983]. The SDD does not
reproduce A exactly, even if k = n, but it uses very little storage with respect to
the observed accuracy of the approximation. A rank-k1 SDD requires the storage
of k(m + n) values from the set f�1; 0; 1g and k scalars. An element of the set
f�1; 0; 1g can be expressed using log2 3 bits, although we use two bits per element
for simplicity. The scalars need to be only single precision because the algorithm is

1Although the approximation may not be rank-k algebraically, it is the sum of k rank-1 matrices.
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self-correcting. The SVD, on the other hand, has been computed in double precision
accuracy for numerical stability [Paige 1974; Wilkinson 1965] and to keep open the
possibility of updating the decomposition if documents are added or deleted from
the collection [Berry et al. 1995; O'Brien 1994]. Assuming that double precision
scalars require 8 bytes and single precision scalars require 4, and packing 8 bits in
a byte, we obtain the following storage comparison between rank-k SVD and SDD
approximations to an m� n matrix:

Method Component Total Bytes
U km double precision numbers

SVD V kn double precision numbers 8k(m+ n+ 1)
� k double precision numbers
X km numbers from f�1; 0; 1g

SDD Y kn numbers from f�1; 0; 1g 4k + 1
4k(m+ n)

D k single precision numbers

For equal values of k, the SVD requires nearly 32 times more storage than the SDD.
However, we shall see that the SDD rank should be about 50% larger than the SVD
rank and results in a 95% reduction in storage.

The SDD approximation is formed iteratively. The remainder of this section
comes from O'Leary and Peleg [1983] but is presented here in a slightly di�erent
form. Let A0 = 0, and let Rk be the residual matrix at the kth step, that is,
Rk = A�Ak�1. We wish to �nd a triplet (dk; xk; yk) that solves

min
x2Sm

y2Sn

d>0

Fk(d; x; y) � kRk � dxyT k2F : (1)

This is a mixed integer programming problem.
We can formulate this as an integer programming problem by eliminating d. For

convenience, we temporarily drop the subscript k. We have

F (d; x; y) =

mX
i=1

nX
j=1

(rij � dxiyj)
2 = kRk2F � 2dxTRy + d2kxk22kyk

2
2:

At the optimal solution,

@F=@d = �2xTRy + 2dkxk22kyk
2
2 = 0;

so the optimal value, d�, of d is given by

d� =
xTRy

kxk22kyk
2
2

:

Plugging d� into F , we get

F (d�; x; y) = kRk2F � 2

�
xTRy

kxk22kyk
2
2

�
xTRy +

�
xTRy

kxk22kyk
2
2

�2
kxk22kyk

2
2

= kRk2F �
(xTRy)2

kxk22kyk
2
2

: (2)
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Thus (1) is equivalent to

max
x2Sm

y2Sn

~F (x; y) �
(xTRy)2

kxk22kyk
2
2

; (3)

which is an integer programming problem with 3(m+n) feasible points.
When both m and n are small, we enumerate the feasible points and compute

each function value to determine the maximizer. However, as the size of m and/or
n grows, the cost of this approach grows exponentially. Rather than trying to solve
the problem exactly, we use an alternating algorithm to generate an approximate
solution. We begin by �xing y and solving (3) for x, we then �x that x and solve
(3) for y, we then �x that y and solve (3) for x, and so on.
Solving (3) is very easy when either x or y is �xed. Suppose that y is �xed. Then

we must solve

max
x2Sm

(xT s)2

kxk22
; (4)

where s = Ry=kyk2 is �xed. Sort the elements of s so that

jsi1 j � jsi2 j � � � � � jsim j:

If we knew x had exactly J nonzeros, then it is clear that the solution to (4) would
be given by

xij =

�
sign(sij ) if 1 � j � J
0 if J + 1 � j � m

:

Therefore, there are only m possible x-vectors we need to check to determine the
optimal solution for (4).
Hence, the O'Leary-Peleg algorithm to �nd the SDD approximation of rank kmax

to an m� n matrix A is given by

(1) Let R1 = A.

(2) Outer Iteration (k = 1; 2; : : : ; kmax):

(a) Choose a starting vector y such that Rky 6= 0.

(b) Inner Iteration (i = 1; 2; : : : ; imax):

i. Fix y and let x solve max
x2Sm

(xTRky)
2

kxk22
:

ii. Fix x and let y solve max
y2Sn

(yTRT
k x)

2

kyk22
:

(c) End Inner Iteration.

(d) Let xk = x, yk = y, dk =
xTkRkyk

kxkk22kykk
2
2

.

(e) Let Rk+1 = Rk � dkxky
T
k .

(3) End Outer Iteration.
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We specify a set number of iterations for the inner loop, but we may use a heuristic
stopping criterion instead. From (2) note that

kRk+1k
2
F = kRk � dkxky

T
k k

2
F = kRkk

2
F �

(xTkRkyk)
2

kxkk22kykk
2
2

: (5)

So for a given (x; y) pair, we can compute exactly what the F-norm of Rk+1 will be
if we accept them. The method proposed in O'Leary and Peleg [1983] to determine
when to stop the inner iterations is the following: At the beginning of the inner
iterations, set change = 1. Then at the end of each inner iteration, compute

newchange =
(xTRky)

2

kxk22kyk
2
2

; and

improvement =
jnewchange� changej

change
;

change = newchange:

Once improvement falls below a given level, say 0.01, we terminate the inner it-
erations. In other words, we iterate until the improvement in the residual has
stagnated. This is the method we use in our tests, and experimentally we found
that 0.01 was a good tolerance. As a starting vector for the inner iteration, we
use a vector in which every 100th element is one and all the others are zero. It
can be shown that, under mild assumptions on the starting guess, we are ensured
that Ak ! A as k ! 1; see Kolda [1997] for this and other convergence results.
Experiments using a singular vector as a starting guess, or starting guesses with
guaranteed convergence, did not produce improvement over this simple minded
initialization.
Assuming that we do a �xed number of inner iterations per step, the complexity

of the algorithm is O(k2(m+n)+m logm+n logn). In practice, we found that the
number of inner iterations to reach the convergence tolerance averaged near 10.
In Figure 3 we show the result of approximating the term document matrix in

Figure 1 with a rank-2 SDD approximation. As in the SVD, noise has been added to
the \Mark" and \Twain" entries for document 2, revealing the latent relationship.

Document

Term 1 2 3 4 Query

Mark 7.9 7.9 7.9 0 1

Twain 7.9 7.9 7.9 0 1

Samuel 7.9 7.9 7.9 0 0
Clemens 7.9 7.9 7.9 0 0

Purple 0 0 0 17.5 0
Fairy 0 0 0 17.5 0

Score 15.8 15.8 15.8 0

Fig. 3. LSI via the SDD
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4.2 Query Processing

We evaluate queries in much the same way as we did for the SVD, by computing
s = ~qT ~A, with

~A = D1��
k Y T

k ; ~q = D�
kX

T
k q:

Again, we generally re-normalize the columns of ~A.
In Figure 3, the second document is now recognized as relevant, as it was when

using the SVD-based LSI.
For decompositions of equal rank, the SDD-based method requires signi�cantly

fewer oating-point operations than the SVD-based method to process the query:

Operation SDD SVD
Additions k(m+ n) k(m+ n)

Multiplications k k(1 +m+ n)

If we re-normalize the columns of ~A then each method requires n additional multi-
plies and storage of n additional oating point numbers.

5. COMPUTATIONAL COMPARISON OF SDD- AND SVD-BASED LSI

In this section, we present computational results comparing the SDD- and SVD-
based LSI methods. All tests were run on a Sparc 20. Our code is in C, with the
SVD taken from subroutine las2 in SVDPACKC [Berry et al. 1993].

5.1 Methods of Comparison

We will compare the SDD- and SVD-based LSI methods using three standard test
sets; see Table 4. Each test set comes with a collection of documents, a collection
of queries, and the \correct answers," that is, a list of relevant documents.

Table 4. Characteristics of the test sets.

MEDLINE CRANFIELD CISI

Number of Documents: 1033 1399 1460
Number of Queries: 30 225 35
Number of (Indexing) Terms: 5526 4598 5574
Avg No of Terms/Document: 48 57 46
Avg No of Documents/Term: 9 17 12
% Nonzero Entries in Matrix: 0.87 1.24 0.82
Storage for Matrix (MB): 0.4 0.6 0.5
Avg No of Terms/Query: 10 9 7
Avg No Relevant/Query: 23 8 50

We will compare the systems by looking at average precision, a standard measure
used by the information retrieval community [Harman 1995, Appendix A]. When
we evaluate a query, we receive an ordered list of documents. Let ri denote the
number of relevant documents up to and including position i in the ordered list.
For each document, we compute two values: recall and precision. The recall at the
ith document is the proportion of relevant documents returned so far, that is,

ri
rn
:
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(Note that rn is the total number of relevant documents.) The precision at the ith
document, pi, is the proportion of documents returned so far that are relevant, that
is,

pi =
ri
i
:

The pseudo-precision at recall level x 2 [0; 1], ~p(x), is de�ned as

~p(x) = max fpi j ri � (x � rn); i = 1; : : : ; ng :

The N -point (interpolated) average precision for a single query is de�ned as

1

N

N�1X
i=0

~p

�
i

N � 1

�
:

We use 11-point average precision. Since we have multiple queries, we will consider
the mean and median average precision over all queries in each data set.

5.2 Parameter Choices

We have two parameter choices to make for the SDD- and SVD-based LSI methods:
the choice of the splitting parameter �, and the choice of whether or not to re-
normalize the columns of ~A.

Table 5. Mean average precision for the SDD- and SVD-based methods with di�erent parameter
choices on the MEDLINE data set with k=100 and weighting lxn.bpx.

SDD SVD
Re-Normalize? Re-Normalize?

� Yes No Yes No

0 62.1 61.2 65.1 64.2

0.5 62.6 61.2 64.7 64.2

-0.5 57.9 61.2 64.7 64.2

1.0 61.7 61.2 64.2 64.2

-1.0 48.6 61.2 62.3 64.2

We investigated these two choices with the SVD- and SDD-based methods on
the MEDLINE data set using the weighting lxn.bpx. The results are summarized
in Table 5. In all further tests, we will use � = 0:5 with re-normalization for the
SDD-based method and � = 0 with re-normalization for the SVD-based method.
We experimented using other weightings and other data sets and con�rmed that
these parameter choices are always best or very close to it.

5.3 Comparisons

We tested the SDD- and SVD-based LSI methods and the vector space method (VS)
of Section 2 with a number of weightings. We selected these particular weightings
because they performed well for the vector space method [Kolda 1997]. Note that
we choose not to use a global weight on the term-document matrix; our studies have
shown that global weightings on the term-document matrix have no positive e�ect
on performance. We do use global weightings on the query. This can be thought of
as applying the global weighting after doing the decomposition. We present mean
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average precision results in Table 6 using a rank k = 100 approximation in each
method; this table also includes vector space method results for comparison.

Table 6. Mean average precision results for the SDD-based LSI, SVD-based LSI, and the vector
space (VS) methods with k=100.

MEDLINE CRANFIELD CISI
Weight SDD SVD VS SDD SVD VS SDD SVD VS

lxn.bfx 62.6 64.6 54.6 35.7 40.4 45.5 15.6 16.6 17.8

lxn.bpx 62.6 65.1 54.6 35.6 39.9 45.5 15.2 16.9 17.9

lxn.lfx 61.2 64.0 53.7 35.8 40.3 45.6 16.0 16.6 18.3

lxn.lpx 61.3 64.3 53.8 35.5 40.1 45.7 15.5 16.9 18.4

lxn.tfx 60.9 63.5 53.2 35.7 40.2 45.6 16.3 16.9 18.4

lxn.tpx 60.9 63.8 53.4 35.4 39.9 45.6 15.7 17.0 18.4

cxx.bpx 57.9 59.6 51.9 32.9 38.9 43.4 17.1 17.9 17.6

cxn.bfx 58.4 62.5 53.6 33.1 38.7 44.1 17.8 16.5 17.5

cxn.bpx 58.4 63.0 53.6 32.6 38.7 43.4 18.1 17.6 17.5

cxn.tfx 56.8 61.5 52.5 33.3 38.8 43.9 17.1 16.9 18.3

cxn.tpx 57.0 61.8 52.5 32.7 38.2 43.3 17.1 17.7 18.3

To continue our comparisons, we select a \best" weighting for each data set. In
Table 6 we have highlighted the \best" results for each data set in boldface type.
We will use only these weightings for the remainder of the paper.
In Figure 4, we present results for the MEDLINE data. The upper right graph

plots the mean average precision vs. query time for approximations of increasing
rank. For example, the left-most asterisk corresponds to the rank-10 SDD, the
next asterisk corresponds to the rank-20 SDD, and so on. The SVD results are
presented in the same manner using circles. The vertical dotted line shows the query
time for the vector space method, and the horizontal dotted line shows the mean
average precision for the vector space method. Note that each LSI method reaches
a mean average precision peak and then declines, asymptotically approaching the
performance of the vector space method; the peak corresponds to when we have
added just the right amount of \noise." The SDD-based method peaks at a mean
average precision of 63.6, corresponding to a query time of 3.4 seconds using a rank-
140 approximation. To be that fast in terms of query time, the SVD-based method
can only use a rank-20 approximation that achieves a mean average precision of 51.8.
At its peak mean average precision of 65.5, the SVD-based method has a query time
of 6.3 seconds using a rank-110 approximation. Note that both methods require
more time for the query than the vector space method, but this is the trade-o�
for increased performance in terms of average precision. The upper-right graph is
the same, only this time we are using median average precision rather than mean
average precision.
The middle left graph in Figure 4 plots mean average precision against storage for

the decomposition. Again, the left-most asterisk corresponds to the rank-10 SDD,
the next asterisk to the right corresponds to the rank-20 SDD and so on. The SVD
method is plotted in the same manner using circles. Observe that there are only
three data points for the SVD; this is because the remaining points are past the
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Fig. 4. A comparison of the SDD- (*) and SVD-based (o) LSI method on the MEDLINE data
set. We plot 60 data points for each graph, corresponding to k = 10; 20; : : : ; 600. The dotted lines
show the corresponding data for the vector space method.

edge of the graph2. The horizontal dotted line shows the mean average precision
for the vector space method, and the vertical dotted line shows how much space
is required to store the original term-document matrix. Observe that at its mean
average precision peak, the SDD-based method needs only 0.2 megabytes (MB) of
storage, only half that required by the original matrix (0.4 MB). Conversely, the
SVD-based method requires over 5 MB of storage at its mean average precision
peak. The middle right graph is the same as the graph on the left except that we
are using median average precision rather than mean average precision.
The bottom left graph in Figure 4 plots decomposition size against the rank of the

matrix. Note that the y-axis is logarithmic. The asterisks and circles are de�ned as
before, and the vertical dotted line indicates how much storage the original matrix
required.
The bottom right graph in Figure 4 plots the norm of the relative residual

(kRkkF=kR0kF ) against storage. Note that the x-axis is logarithmic. The asterisks

2Storage space can be economized for the SVD by using lower precision in Uk and Vk. For instance,
if 8-bit �xed-point precision is used, the mean average precision is 64.5 rather than the 65.5 of
double precision. Beyond this point, however, the mean average precision drops rapidly: 60.2,
32.3, and 6.5 for 6, 4, and 2-bit precision, respectively. Even if low precision is used in retrieval, a
higher precision version would need to be preserved if future updates to the document collection
are expected.
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and circles are de�ned as before, and the horizontal dotted line indicates how much
room the original matrix required. The primary observation we make from this
graph is that if we are given SDD and SVD approximations of equal storage size,
the SDD approximation will have a lower residual.
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Fig. 5. A comparison of the SDD- (*) and SVD-based (o) LSI methods on the CRANFIELD
data set. We plot 40 data points for each graph, corresponding to k = 10; 20; : : : ; 400. The dotted
lines show the corresponding data for the vector space method.

Figure 5 shows the same series of graphs for the CRANFIELD dataset. This
dataset is troublesome for LSI techniques; they do not do as well as the vector
space method. From the upper two graphs in Figure 5 we see that, for equal
query times, the SDD method does as well as the SVD-based method in terms
of average precision. Storage-wise, we again see the SDD-based method is much
more economical than the SVD-based method. The bottom two graphs look nearly
identical to those in Figure 4.
Lastly, Figure 6 shows the same series of graphs on the CISI dataset. Here the

SDD-based method peaks slightly higher than the SVD-based method as shown in
the two upper graphs. The SDD-based method peaks at a mean average precision
of 19.1 at 4.3 seconds using a rank-140 SDD. If we restrict the SVD-based method
to only 4.3 seconds of query time, it can only use a rank-30 SVD which achieves
a mean average precision of 15.2. At its peak, the SVD-based method reached a
mean average precision of 18.3 using a rank-90 SVD. In terms of storage, at its
peak the SDD uses less than half the storage (0.2 MB) of the original matrix (0.5
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Fig. 6. A comparison of the SDD- (*) and SVD-based (o) LSI methods on the CISI data set. We
plot 49 data points for each graph, corresponding to k = 10; 20; : : : ; 490. The dotted lines show
the corresponding data for the vector space method.

MB). This means that we get compression as well as an increase in performance.
The bottom two graphs again look nearly identical to those in Figure 4.

Table 7. Comparison of the SDD- and SVD-based methods at their respective peaks.

MEDLINE CRANFIELD CISI

SDD SVD SDD SVD SDD SVD

Avg Qry Time (Sec) 0.11 0.21 0.28 0.65 0.12 0.18

Dimension (k) 140 110 390 400 140 90

Mean Avg Prec 63.6 65.5 44.9 47.0 19.1 18.3

Median Avg Prec 70.4 71.0 37.3 40.9 19.4 18.5

Avg in Top Ten 7.17 7.43 2.65 2.67 2.51 2.49

Storage (MB) 0.2 5.8 0.6 19.2 0.2 5.1

Decomp Time (Sec) 245 54 1314 641 279 54

Rel Resid Norm 0.85 0.78 0.63 0.45 0.85 0.81

Table 7 compares the two methods at their respective mean average precision
peaks. The �rst row lists the average time to complete a single query. The SDD-
based method is approximately twice as fast as the SVD-based method. The second
row lists the rank of the approximation. Although the SDD method saves much
less data per vector, it requires only about 50% more vectors than the SVD. The
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third and fourth rows list the mean and median average precisions respectively. We
claim that the methods are basically equal in terms of these measures. To give
a more concrete idea of what a user might expect, the �fth row lists the average
number of relevant documents returned in the top ten. Again the two methods
are nearly equal with respect to this measure. The sixth row compares the storage
requirements of the two methods. The SVD approximation requires over twenty
times more storage than the SDD approximation. The seventh row shows that it
takes about �ve times longer to compute the SDD than the SVD; however, this is
only a one time expense. The last row gives the norm of the relative residual. Note
that for both MEDLINE and CISI, this value is around 0.80. In the CRANFIELD
data, neither method really peaks. The relative residual may give us a clue in
determining how good our approximation should be, that is, what value of k we
should choose. Since we know the norm of the residual as a by-product of the
approximation, we can easily track the stopping criterion.
To summarize, SDD-based LSI retrieves documents as well as SVD-based LSI,

requires only about half the query time, and requires less than one-twentieth the
storage. The only disadvantage of the SDD-based method is that computing the
SDD approximation takes �ve times as long as computing the SVD approximation.
The SVD is rather di�cult to update when the document collection changes, but in
the next section we discuss how easy it is to update the SDD, and, in the process,
develop a more economical way to compute the initial SDD.

6. MODIFYING THE SDD WHEN THE DOCUMENT COLLECTION CHANGES

Thus far we have discussed the usefulness of the SDD on a �xed document collection.
In practice, it is common for the document collection to be dynamic: new documents
are added, and old documents are removed. In this section, we will focus on the
problem of modifying a SDD decomposition when the document collection changes.
SVD-updating has been studied by O'Brien [1994] and [Berry et al. 1995]. The

authors report that updating the SVD takes almost as much time as re-computing
it, but that it requires less memory. The authors' methods are similar to what we
do in Method 1 in the next section.

6.1 Adding or Deleting Documents

Suppose that we have an SDD approximation for a document collection and then
wish to add more documents. Rather than compute a new approximation, we will
use the approximation from the original document collection to generate a new
approximation for the enlarged collection.
Let m1 and n1 be the number of terms and documents in the original collection,

n2 be the number of documents added, and m2 be the number of new terms3. Let
the new document collection be represented as

A =

�
A11 A12

A21 A22

�
where

3Recall that a term is any word that appears at least twice in the collection and is not a stop
word. The addition of new documents may add new terms, some of which may have appeared
once in the original document collection.
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|A11 is an m1 � n1 matrix representing the original document collection,

|A12 in an m1 � n2 matrix representing the new documents indexed by the m1

terms used in the original collection,

|A21 is an m2 � n1 matrix representing the original documents indexed by the
newly introduced terms, and

|A22 is an m2 �n2 matrix representing the new documents indexed by the newly
introduced terms.

Recall that we are not using global weighting on the term-document matrix, so
A11 will not change. We will discuss what to do if there are global weights in the
next subsection.
Assume that X(1), D(1), and Y (1) are the components of the SDD approximation

for A11. We propose two methods for updating this decomposition. Each methods
is a two-step process: In the �rst step, we incorporate the new documents using
the existing terms, and in the second step, we incorporate the new terms (for both
old and new documents).

Method 1: Append rows to Y (1) and X(1). The simplest update method is
to keep the existing decomposition �xed and just append new rows corresponding
to the new terms and documents. The D will not be recomputed, so the �nal D is
given by

D = D(1):

To incorporate the documents (the �rst step), we want to �nd Y (2) 2 Sn2�k such
that

�
A11 A12

�
� X(1)D

�
Y (1)

Y (2)

�T
:

Let kmax be the rank of the decomposition desired; generally this is the same as
the rank of the original decomposition. For each value of k = 1; : : : ; kmax, we must
�nd the vector y that solves

min
y2Sn2

kA(c) � dxyT kF ;

where A(c) = A12 �X
(1)
k�1Dk�1(Y

(2)
k�1)

T , x is the kth column of X(1), and d is the
kth diagonal element of D. We never access A11, and this may be useful in some
situations. The solution y becomes the kth column of Y (2). The �nal Y is given by

Y =

�
Y (1)

Y (2)

�
:

To incorporate the terms, we want to �nd X(2) 2 Sm2�k such that

A =

�
A11 A12

A21 A22

�
�

�
X(1)

X(2)

�
DY T :

We �nd X(2) in a analogous way to �nding Y (2). For each k = 1; : : : ; kmax, we must
�nd the vector x that solves

min
x2Sm2

kA(c) � dxyT kF ;
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where A(c) =
�
A21 A22

�
�X

(2)
k�1Dk�1(Yk�1)

T , y is the kth column of Y , and d is
the kth diagonal element of D. Again, we never access A11 for this computation.
The �nal X is given by

X =

�
X(1)

X(2)

�
:

Method 2: Re-Compute Y and D, then X and D. Another possible method is
to completely re-compute Y and D (holding X �xed) to incorporate the documents,
and then recompute X and D, holding Y �xed.
Speci�cally, to incorporate the documents, we �rst want to �nd D(2) and Y such

that �
A11 A12

�
� X(1)D(2)Y;

where Y has no superscript because it will be the �nal Y .
To do this, let kmax be the rank of the decomposition desired. For each k =

1; : : : ; kmax, we must �nd the d and y that solve

min
d>0

y2Sn

kA(c) � dxyT kF ;

where A(c) = A�X
(1)
k�1D

(2)
k�1Y

T
k�1 and x is the kth column of X(1). The solutions d

and y become the kth diagonal element ofD(2) and the kth column of Y respectively.
To incorporate the documents, we wish to �nd X and D such that

A =

�
A11 A12

A21 A22

�
� XDY T :

This is similar to how we computed Y and D(2) in the �rst step. For each k =
1; : : : ; kmax, we must �nd the d and x that solve

min
d>0

x2Sm

kA(c) � dxyT kF ;

where A(c) = A �Xk�1Dk�1Y
T
k�1 and y is the kth column of Y . The solutions d

and x become the kth diagonal element of D and the kth column of X respectively.

Neither method has any inner iterations, and so both are fast. We tried each
update method on a collection of tests derived from the MEDLINE data. We
split the MEDLINE document collection into two groups. We did a decomposition
on the �rst group of documents with k = 100, then added the second group of
documents to the collection, and updated the decomposition via each of the two
update methods. The results are summarized in Table 8. The second method
has better average precision, as should be expected since we are allowing more to
change. For the second method, the decrease in mean average precision is not very
great when we add only a small number of documents. As the proportion of new
documents to old documents grows, however, performance worsens to the point
that it is worse than the vector space method. Note, however, that great savings in
computation time can be achieved by adding documents incrementally rather than
performing the SDD on a large document collection.
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Table 8. Comparison of two update methods on the MEDLINE data set with k = 100.

Method 1 Method 2

Documents Decomp Time Mean Time Mean
Old New Time (Sec) (Sec) Avg Prec (Sec) Avg Prec

1033 { 150.5 { 62.18 { 62.18
929 104 138.3 10.5 60.10 13.8 61.83
826 207 122.1 10.4 58.44 13.7 61.80
723 310 103.6 10.2 54.59 13.4 62.46
619 414 94.2 10.2 47.70 13.2 59.28
516 517 77.5 10.1 39.11 12.9 58.76
413 620 60.7 9.9 34.00 12.6 58.83
309 724 45.6 9.5 18.98 12.1 57.19
206 827 26.2 9.6 18.50 11.7 52.29
103 930 14.9 9.4 16.26 11.1 51.38

If we wish to delete terms or documents, we simply delete the corresponding rows
in the X and Y matrices. For the SVD, this operation is much more complicated,
since orthogonality must be restored.

6.2 Iterative Improvement of the Decomposition

If we have an existing decomposition, perhaps resulting from adding and/or deleting
documents and terms, we may wish to improve on this decomposition without re-
computing it. We consider two approaches:

Improvement 1: Partial Re-Computation. In order to improve on the de-
composition, we could reduce its rank by deleting, say, 10% of the vectors and then
recompute them using our original algorithm. This method's main disadvantage is
that it can be expensive in time. If performed on the original decomposition, it has
no e�ect.

Improvement 2: Fix and Compute. This method is derived from the second
update method. We �x the current X and re-compute the Y and D; we then �x
the current Y and re-compute the X and D. This method is very fast because
there are no inner iterations. This can be repeated to further improve the results.
If applied to an original decomposition, it would change it.

We took the decompositions resulting from the second update method in the last
subsection and applied the improvement methods to them. We have a rank-100
decomposition. For the �rst improvement method, we re-computed 10 dimensions.
For the second improvement method, we applied the method once. The results are
summarized in Table 9. If we have added only a few documents, neither method is
very helpful. On the other hand, if we have added many documents, then the sec-
ond method is much better. The �rst method could be improved by re-computing
more dimensions, but this would quickly become too expensive. The second method
greatly improves poor decompositions and is relatively inexpensive. It can be ap-
plied repeatedly to further improve the decomposition.
If we choose to use global weighting on the term-document matrix and the global

weights change as a result of adding new documents, we suggest the following
procedure. First use improvement steps to improve the SDD decomposition of
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Table 9. Comparison of two improvement methods on the MEDLINE data set with k = 100.

Improvement 1 Improvement 2

Documents Prev Mean Time Mean Time Mean
Old New Avg Prec (Sec) Avg Prec (Sec) Avg Prec

1033 { 62.16 22.9 62.16 13.5 61.85

929 104 61.83 20.8 61.45 13.4 61.22

826 207 61.80 19.8 61.51 13.5 62.03

723 310 62.46 21.6 61.91 13.4 61.89

619 414 59.28 19.6 58.70 13.6 61.42

516 517 58.76 19.2 59.43 13.5 59.32

413 620 58.83 20.2 59.68 13.4 61.55

309 724 57.19 20.1 57.94 13.6 59.59

206 827 52.29 21.2 54.35 13.4 57.63

103 930 51.38 22.7 53.88 13.4 56.46

A11 with the new global weights, and then proceed with the update procedure as
normal.

7. CONCLUSIONS

We have introduced a semi-discrete matrix decomposition for use in LSI. For equal
query times, the SDD-based LSI method performs as well as the original SVD-based
LSI method. The advantages of the SDD-based method are that the decomposition
takes very little storage and the queries are faster; the disadvantage is that the time
to form the decomposition is large. Since decomposition is a one-time expense, we
believe that the SDD-based LSI method will be quite useful in application.
We have also introduced methods to dynamically update the SDD decomposition

if the document collection changes, as well as methods to improve the decomposition
if it is found to be inadequate. Updating the SDD is much easier than updating
the SVD. Using these updating techniques, the initial decomposition time for the
SDD can be greatly reduced without much reduction in average precision.
Open questions remain: in particular, how the algorithm would behave on more

extensive document collections, whether a large number of incremental updates
to the document collection can be tolerated, and how the algorithm compares to
other approaches, such as the INQUERY retrieval system [Broglio et al. 1995],
random sampling matrix multiplication algorithms [Cohen and Lewis 1997], and
conventional inverted �le based retrieval [Witten et al. 1994].
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